Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Heart Vessels ; 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2233943

ABSTRACT

Coronavirus disease-19 (COVID-19) has extended implications namely the long COVID-19 syndrome. We assessed over-time changes in left ventricular (LV) function, aortic stiffness, autonomic function, and ventricular-arterial coupling (VAC) in post-COVID-19 patients. We followed 34 post-COVID-19 subjects, up to 6 months post-hospital discharge. Subjects without COVID-19 served as control. We evaluated LV global longitudinal strain (LV-GLS), arterial stiffness [carotid-femoral pulse wave velocity (cf-PWV)], and heart rate variability -standard deviation of normal RR intervals (SDNN). VAC was estimated as the ratio of cf-PWV to LV-GLS. Post-COVID-19 individuals (1-month post-hospital discharge) presented with impaired LV-GLS [-18.4%(3.1) vs. -22.0%(2.7), P < 0.001], cf-PWV [12.1 m/s (3.2) vs. 9.6 m/s (1.9), P < 0.001], SDNN [111.3 ms (22.6) vs. 147.2 ms (14.0), P < 0.001], and VAC [-0.68 (0.22) vs. -0.44 (0.10), P < 0.001] compared to control. LV-GLS, SDNN, and VAC improved at the 6-month follow-up however they did not reach control levels. In post-COVID-19 subjects, SDNN and VAC were correlated at the 1-month (R = 0.499, P = 0.003) and 6-month (R = 0.372, P = 0.04) follow-up. Long COVID-19 syndrome was associated with impaired LV-GLS, SDNN, and VAC. Post-COVID-19 subjects presented with autonomic dysregulation associated with aortic stiffness, ventricular-arterial impairment, and LV dysfunction, even 6-months post-hospital discharge. These abnormalities may be related to the presence of long COVID-19 syndrome.

2.
Vascul Pharmacol ; 144: 106975, 2022 06.
Article in English | MEDLINE | ID: covidwho-2184357

ABSTRACT

BACKGROUND: Coronavirus disease-19 (COVID-19) is implicated by active endotheliitis, and cardiovascular morbidity. The long-COVID-19 syndrome implications in atherosclerosis have not been elucidated yet. We assessed the immediate, intermediate, and long-term effects of COVID-19 on endothelial function. METHODS: In this prospective cohort study, patients hospitalized for COVID-19 at the medical ward or Intensive Care Unit (ICU) were enrolled and followed up to 6 months post-hospital discharge. Medical history and laboratory examinations were performed while the endothelial function was assessed by brachial artery flow-mediated dilation (FMD). Comparison with propensity score-matched cohort (control group) was performed at the acute (upon hospital admission) and follow-up (1 and 6 months) stages. RESULTS: Seventy-three patients diagnosed with COVID-19 (37% admitted in ICU) were recruited. FMD was significantly (p < 0.001) impaired in the COVID-19 group (1.65 ± 2.31%) compared to the control (6.51 ± 2.91%). ICU-treated subjects presented significantly impaired (p = 0.001) FMD (0.48 ± 1.01%) compared to those treated in the medical ward (2.33 ± 2.57%). During hospitalization, FMD was inversely associated with Interleukin-6 and Troponin I (p < 0.05 for all). Although, a significant improvement in FMD was noted during the follow-up (acute: 1.75 ± 2.19% vs. 1 month: 4.23 ± 2.02%, vs. 6 months: 5.24 ± 1.62%; p = 0.001), FMD remained impaired compared to control (6.48 ± 3.08%) at 1 month (p < 0.001) and 6 months (p = 0.01) post-hospital discharge. CONCLUSION: COVID-19 patients develop a notable endothelial dysfunction, which is progressively improved over a 6-month follow-up but remains impaired compared to healthy controls subjects. Whether chronic dysregulation of endothelial function following COVID-19 could be accompanied by a residual risk for cardiovascular and thrombotic events merits further research.


Subject(s)
COVID-19 , COVID-19/complications , Cohort Studies , Endothelium, Vascular , Humans , Prospective Studies , Vasodilation/physiology , Post-Acute COVID-19 Syndrome
3.
Curr Pharm Des ; 28(39): 3225-3230, 2022.
Article in English | MEDLINE | ID: covidwho-2089588

ABSTRACT

BACKGROUND: Coronavirus Disease-19 (COVID-19) is implicated in endotheliitis, which adversely affects cardiovascular events. The impact of vaccination with COVID-19 on the clinical outcome of patients is documented. OBJECTIVE: To evaluate the impact of vaccination with COVID-19 on the severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection-related endothelial impairment. METHODS: We enrolled 45 patients hospitalized for COVID-19 (either vaccinated or not against SARS-CoV-2). Clinical and laboratory data were collected, and brachial artery flow-mediated dilation (FMD) was evaluated. Subjects without COVID-19 were used as the control group. RESULTS: There was no difference in age (64.7 ± 7.5 years vs. 61.2 ± 11.1 years vs. 62.4 ± 9.5, p = 0.28), male sex (49% vs. 60% vs. 52%, p = 0.71), control subjects, vaccinated, and unvaccinated subjects with COVID-19, respectively. Of the patients with COVID-19, 44% were vaccinated against SARS-CoV-2. Unvaccinated COVID-19 patients had significantly impaired FMD compared to vaccinated COVID-19 patients and Control subjects (2.05 ± 2.41 % vs. 7.24 ± 2.52% vs. 7.36 ± 2.94 %, p <0.001). Importantly, post hoc tests revealed that unvaccinated COVID-19 patients had significantly impaired FMD from both Vaccinated COVID-19 subjects (p <0.001) and from Control subjects (p <0.001). There was no difference in FMD between the control group and the vaccinated COVID-19 group (p = 0.99). CONCLUSION: Hospitalized patients with COVID-19 present endothelial dysfunction in the acute phase of the disease. Endothelial function in unvaccinated patients with COVID-19 is impaired compared to control subjects as well compared to vaccinated patients with COVID-19. Vaccinated hospitalized subjects with COVID-19 do not show endothelial dysfunction, strengthening the protective role of vaccination against SARS-CoV-2.


Subject(s)
COVID-19 , Vascular Diseases , Humans , Male , Middle Aged , Aged , SARS-CoV-2 , COVID-19/prevention & control , Vaccination
5.
World J Virol ; 11(4): 216-220, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2056078

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with poor cardiovascular outcomes in patients with heart failure (HF) of all categories of ejection fraction (EF), but mainly in patients with HF with reduced EF. Moreover, cardiac transplant patients exhibit worse cardiovascular prognosis, high mortality, and more admissions to the intensive care unit. In general, COVID-19 seems to de-teriorate the clinical status of HF and favors the development of acute respiratory distress syndrome and multiorgan failure, especially in the presence of cardiovascular comorbidities such as diabetes mellitus, kidney dysfunction, and older age. COVID-19 may induce new-onset HF with complex mechanisms that involve myocardial injury. Indeed, myocardial injury comprises a large category of detrimental effects for the myocardium, such as myocardial infarction type 1 or type 2, Takotsubo cardiomyopathy, microvascular dysfunction and myocarditis, which are not easily distinguished by HF. The pathophysiologic mechanisms mainly involve direct myocardial damage by severe acute respiratory syndrome coronavirus 2, cytokine storm, hypercoagulation, inflammation, and endothelial dysfunction. The proper management of patients with COVID-19 involves careful patient evaluation and ongoing monitoring for complications such as HF.

7.
Biomedicines ; 10(2)2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1649346

ABSTRACT

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and the resulting coronavirus disease-19 (COVID-19) have led to a global pandemic associated with high fatality rates. COVID-19 primarily manifests in the respiratory system as an acute respiratory distress syndrome following viral entry through the angiotensin-converting enzyme-2 (ACE2) that is present in pulmonary epithelial cells. Central in COVID-19 is the burst of cytokines, known as a "cytokine storm", and the subsequent widespread endothelial activation, leading to cardiovascular complications such as myocarditis, arrhythmias, and adverse vascular events, among others. Genetic alterations may play an additive, detrimental role in the clinical course of patients with COVID-19, since gene alterations concerning ACE2, major histocompatibility complex class I, and toll-like receptors may predispose patients to a worse clinical outcome. Since the role of inflammation is quintessential in COVID-19, pharmacologic inhibition of various signaling pathways such as the interleukin-1 and -6, tumor necrosis factor-alpha, interferon gamma, Janus kinase-signal transducer and activator of transcription, and granulocyte-macrophage colony-stimulating factor may ameliorate the prognosis following timely administration. Finally, frequently used, non-specific anti-inflammatory agents such as corticosteroids, statins, colchicine, and macrolides represent additional therapeutic considerations.

8.
Int J Mol Sci ; 22(20)2021 Oct 16.
Article in English | MEDLINE | ID: covidwho-1470892

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular diseases are characterized by a dysregulated inflammatory and thrombotic state, leading to devastating complications with increased morbidity and mortality rates. SUMMARY: In this review article, we present the available evidence regarding the impact of inflammation on platelet activation in atherosclerosis. Key messages: In the context of a dysfunctional vascular endothelium, structural alterations by means of endothelial glycocalyx thinning or functional modifications through impaired NO bioavailability and increased levels of von Willebrand factor result in platelet activation. Moreover, neutrophil-derived mediators, as well as neutrophil extracellular traps formation, have been implicated in the process of platelet activation and platelet-leukocyte aggregation. The role of pro-inflammatory cytokines is also critical since their receptors are also situated in platelets while TNF-α has also been found to induce inflammatory, metabolic, and bone marrow changes. Additionally, important progress has been made towards novel concepts of the interaction between inflammation and platelet activation, such as the toll-like receptors, myeloperoxidase, and platelet factor-4. The accumulating evidence is especially important in the era of the coronavirus disease-19 pandemic, characterized by an excessive inflammatory burden leading to thrombotic complications, partially mediated by platelet activation. Lastly, recent advances in anti-inflammatory therapies point towards an anti-thrombotic effect secondary to diminished platelet activation.


Subject(s)
Atherosclerosis/pathology , COVID-19/pathology , Inflammation Mediators/metabolism , Atherosclerosis/metabolism , COVID-19/virology , Endothelium, Vascular/metabolism , Humans , Neutrophils/metabolism , Nitric Oxide/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , von Willebrand Factor/metabolism
9.
Cardiovasc Res ; 117(14): 2705-2729, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1411978

ABSTRACT

The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury, endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subsequent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute complications in the absence of a detectable viral infection. This conditions often referred to as 'post-acute COVID-19' may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and development of effective treatments for COVID-19 infection are of crucial importance.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , COVID-19/etiology , COVID-19/physiopathology , COVID-19/therapy , Cardiometabolic Risk Factors , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/physiopathology , Clinical Trials as Topic , Humans , Inflammation/complications , Inflammation/virology , Microcirculation , Sex Characteristics , Post-Acute COVID-19 Syndrome
10.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282515

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with excess mortality worldwide. The cardiovascular system is the second most common target of SARS-CoV-2, which leads to severe complications, including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism, as well as other major thrombotic events because of direct endothelial injury and an excessive systemic inflammatory response. This review focuses on the similarities and the differences of inflammatory pathways involved in COVID-19 and atherosclerosis. Anti-inflammatory agents and immunomodulators have recently been assessed, which may constitute rational treatments for the reduction of cardiovascular events in both COVID-19 and atherosclerotic heart disease.


Subject(s)
Atherosclerosis/pathology , COVID-19/pathology , Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Atherosclerosis/complications , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , COVID-19/complications , COVID-19/virology , Chemokines/metabolism , Cytokine Release Syndrome/etiology , Cytokines/metabolism , Humans , Prognosis , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
16.
Non-conventional in English | WHO COVID | ID: covidwho-305948
SELECTION OF CITATIONS
SEARCH DETAIL